ASYMPTOTIC BEHAVIOR OF HARMONIC MAPS AND EXPONENTIALLY HARMONIC FUNCTIONS
نویسندگان
چکیده
منابع مشابه
Asymptotic Behavior of Infinity Harmonic Functions Near an Isolated Singularity
In this paper, we prove that if n ≥ 2 and x0 is an isolated singularity of a non-negative infinity harmonic function u, then either x0 is a removable singularity of u or u(x) = u(x0) + c|x − x0| + o(|x − x0|) near x0 for some fixed constant c = 0. In particular, if x0 is nonremovable, then u has a local maximum or a local minimum at x0. We also prove a Bernstein-type theorem, which asserts that...
متن کاملA lower estimate of harmonic functions
We shall give a lower estimate of harmonic functions of order greater than one in a half space, which generalize the result obtained by B. Ya. Levin in a half plane.
متن کاملHarmonic Maps and Biharmonic Maps
This is a survey on harmonic maps and biharmonic maps into (1) Riemannian manifolds of non-positive curvature, (2) compact Lie groups or (3) compact symmetric spaces, based mainly on my recent works on these topics.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Korean Mathematical Society
سال: 2002
ISSN: 0304-9914
DOI: 10.4134/jkms.2002.39.5.731